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Abstract

Fracture properties of various types of concrete, like plain or fiber reinforced concrete are determined in 3-point bending ex-
periments resulting in a force-displacement diagram. Standard properties of concrete are then determined using technical norms.
However, post-peak behavior of concrete, including crack propagation, cannot be described using standard properties. Authors are
developing nonlinear, stochastically based material model for concrete to describe post-peak concrete behavior together with crack
propagation. One of the most desirable properties of the model is its suitability for later in-verse analysis and parameter determina-
tion. Model is based on moment – curvature (m-κ) relation and layered approach to discretization. In this work, we are presenting
the basic properties of the model and its ability to capture the phenomena of interest (proof of concept).
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fc force - displacement function for concrete defined in piecewise terms
ε position of the neutral axis in beam’s cross section
κ curvature of the beam
hi position of ith layer
m moment acting in beam’s cross section
F force balance function
M moment balance function
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1. Introduction

Fracture behavior of concrete is mostly characterized with crack propagation, which becomes easily exposed under
bending of concrete specimens. Three-point bending is standard experimental procedure for determination of relevant
fracture properties of various types of concrete, like plain or fiber reinforced concrete. Specimens could be with or
without a notch (as in our case, compare Beigrezaee et al. (2019)) and loading process could be considered quasi-static
(see e.g., Gomez et a,. (2020)). Result of an experiment is obtained as the force – displacement diagram where the
peak load determines the boundary of fracture behavior of concrete. Before the peak load, the specimen behavior is
mostly linear or moderately nonlinear without visible large cracks; from that area in the diagram standard proper-
ties of concrete (modulus of elasticity, compressive strength, etc.) are determined using technical norms (e.g., see
ASTMC 1609M (2012)). After the peak load the specimen is in the softening regime characterized with appearance
of visible cracks and their rapid propagation, compare Čakmak et al. (2019) or Lukács (2019) or Majidi et al. (2019)
or Arandjelović et al. (2020). The post-peak behavior, together with crack propagation cannot be described using
standard material properties. Authors are developing nonlinear, stochastically based material model for concrete to
describe post-peak concrete behavior together with the crack propagation Kožar et al. (2019) and Kožar et al. (2020).
Authors’ intention is to further develop the model and use it later for inverse analysis, parameter estimation and
eventual damage assessment, see Kožar et al. (2018) and Pastorcic et al. (2019). Plans for later investigation include
analysis of low cycle fatigue (similar to Cazin et al. (2020)] and based on Kožar and Ožbolt (2010)).

Model is based on an already known moment – curvature (m-κ) relationship (see e.g., Kišiček and Sorić (2003)),
however, layered approach for cross-section discretization in a post-peak analysis is a novelty. Beam cross-section is
divided into a number of layers where each layer obeys a force – displacement relation and force contributions from
all the layers comprise force balance and moment balance equations. Behavior of each layer could be derived using
various approaches (e.g., see Ferro and Berto (2020)) but here we assume it to be known.

Laboratory experiments have been performed where concrete beams with and without fibers were exposed to three
point bending (see Bede and Mrakovčić (2020)). The resulting force – displacement diagrams have been used for
evaluation of the numerical model. In this work we are presenting the basic properties of the model and its ability to
capture the post-peak beam regime, i.e., we are presenting the proof of concept for a layered beam model.

2. Experimental analysis

Laboratory experiments have been performed consisting of three-point bending of high strength concrete beams
with and without fibers. In this work, we are interested only in beams without fibers; they will set the reference
for beams with fibers that would be analyzed later. Nine beams have been tested; dimensions were 100 x 100 x
400 mm with 300 mm span between the supports, without notch. The flexure tests were carried out by means of
a servo-controlled hydraulic machine at the laboratory of the Faculty of Civil Engineering in Rijeka. The resulting
load-displacement history was recorded up to the deflection of min 3 mm to obtain the post-peak behavior. The testing
setup is presented in Fig. 1. It could be seen that beam without fibers (Fig. 1.(a)) is very brittle and it is not simple to
properly record its full load – displacement diagram that includes the post-peak regime.

Fig. 1. Three-point bending tests for: (a) ) beam without fibers; (b) ) beam with fibers.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.prostr.2021.03.022&domain=pdf
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For beams without fibers, one is typically interested in displacement up to the peak load as is shown in Fig. 2.(a).
Including the post-peak regime into the diagram full force-displacement behavior is recorded as shown in Fig. 2.(b).
Fig. 2.(b) shows results for flexure of all the nine specimens and their mean that has been calculated (thick green line).
The mean curve has been used as a reference for numerical analysis. It is interesting to observe how a sharp bi-linear
load – displacement curves from individual flexure experiments trans-form into a well-known softening curve for the
mean result.
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Fig. 2. Experimental results for beam without fibers: a) from testing machine up to the peak load; b) statistics after the peak load.

3. Numerical model

Numerical model is based on an already known moment – curvature (m-κ) relationship that has rather long tradition
in engineering analysis of beams. This analysis is usually limited to the pre-peak load intensity level and the cross-
section is not discretized, it is described with a relation, instead. In our work cross-section is discretized into layers
where the number of layers determines accuracy and smoothness of the solution. Optimization of the number of layers
is not in the focus of this work and it has been determined by experience, in our case 12. Each layer has equal force –
displacement relation described with the equation

fc(x, a, bc, bt) =




a xE exp
−ax

bc
if x < 0

a xE exp
−ax

bt
if x ≥ 0

(1)

where a and b are shape parameters (bc for the compression part of material deformation and bt for the tension
part), E is modulus of elasticity. The material model determines formulation of the function; we have taken fiber
bundle model to represent our material behavior (see e.g., Mishnaevsky (2011)); also, the function is similar to one in
the microplane material model Ožbolt et al. (2001). Fig. 3.(a) presents the influence of parameters a and b on shape of
the function and Fig. 3.(b) demonstrates different behavior of the function in tension and compression (since bc and
bt are generally different). This different behavior of the function in different sections of domain requires a special
solution procedure that takes into account that the function is in different domain for each layer. Our model is built in
Wolfram Mathematica (2020) where the function is described as a ‘piecewise’ function so that even more complicated
domain segmentation could be taken into account.

Bending model is based on two equilibrium equations, force balance

F (ε, κ) = ∆h

layers∑
i=1

fc [(hi − εh) tan(κ)] = 0 (2)

and moment balance

M(ε, κ) = ∆h

layers∑
i=1

(hi − εh) · fc [(hi − εh) tan(κ)] = m (3)
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Fig. 3. Force-displacement law for each layer: a) influence of parameter a and b; b) whole force-displacement diagram for concrete (curved) and
(eventual) reinforcement (straight).

where ε is the normalized neutral axis position and κ is the curvature, h is the cross-section height, hi is position
of layer i, ∆h is height of each layer and layer is total number of layers and fc (force - displacement function for
concrete) is given above.
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Fig. 4. Three-point bending models: a) geometry of layers; b) equilibrium equations (force-red, moment-blue).

Beam geometry relevant for equilibrium equations is given in Fig. 4.(a). Fig. 4.(b) is a graphical representation of
the system of equilibrium equations. Red line stands for force equation and blue line stands for moment equation. It is
visible that there are two solutions depicted as cross sections of the red and blue lines (it is there that both equations are
satisfied). One solution corresponds to the pre-peak equilibrium and the other for the post-peak equilibrium. Existence
of two solutions for one loading moment requires careful tracking of parameters ε and κ during the solution process. In
this work, we have applied the ‘arc-length’ method. Table 1 gives an example of two solutions for moment m = 0.1.

Table 1. Equilibrium solutions for M=0.1.

parameter 1st solution 2nd solution

Neutral axis ε 0.43324 0.19938
Curvature κ 0.1547 0.7085

Fig. 5. presents forces in layers of the cross-section as the beam passes through the peak load, blue based colors are
for compression and red based colors are for tension. Cross-section is discretized into 12 layers, 13th been reserved
for (optional) reinforcement that has not been activated in our analysis. In Fig. 5.(a) cross-section is in the pre-peak
regime, in Fig. 5.(b) at the peak load and in Fig. 5.(c) in the post-peak regime. Note that the external loading (moment)
is the same in Fig. 5.(a) and (c).

Fig. 6. presents full range of physically relevant solutions; Fig. 6.(a) shows normalized neutral axis position and
Fig. 6.(b) moment – curvature relation. Shape of the two functions in Fig. 6. depends on the geometry of the specimen
and parameters in the function fc.
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4. Conclusion

In this work, we have presented experimental results for concrete beams under three-point bending. We have
devised a model suitable for description of crack propagation during experiments. Model parameters have been deter-
mined only approximately as a proof of concept. Numerical results from the model successfully qualitatively describe
experimental results. In future work we will apply procedures as in Kožar et al. (2019) and Kožar et al. (2018) to
develop an inverse model of crack propagation in beams under bending. That should enable us to determine parameter
values in the model up to a desired level of accuracy.
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develop an inverse model of crack propagation in beams under bending. That should enable us to determine parameter
values in the model up to a desired level of accuracy.

Acknowledgements

This work has been supported through project HRZZ 7926 ”Separation of parameter influence in engineering mod-
eling and parameter identification” and project KK.01.1.1.04.0056 ”Structure integrity in energy and transportation”,
which is gratefully acknowledged.
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Kožar, I., Torić Malić, N., Simonetti, D., Božić, Ž., 2020. Stochastic properties of bond-slip parameters at fibre pull-out. Engineering Failure
Analysis 111, 104478.
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Kožar, I. and Ožbolt, J., 2010. Some aspects of load-rate sensitivity in visco-elastic microplane material model. Computers & Concrete 7, 331-346.


